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1.0 I N T R O D U C T I O N  

Conical diffusers are commonly used in wind tunnels, test facili- 

ties, propulsion systems, etc. As the flow moves through the diffuser, 

the velocity decreases and the static pressure increases. The amount of 

the pressure rise, i.e., the diffuser performance, is strongly influenced 

by the diffuser inlet flow conditions and the divergence angle. In 

addition, the inlet boundary-layer thickness, the velocity profile, the 

inlet Mach number, Reynolds number, and the turbulence intensity all 

affect the diffuser performance in such a complicated way that diffuser 

design has relied almost solely on empirical data. 

Using recent advances in computational fluid dynamics and turbu- 

lence modeling, a computational method has been developed for incom- 

pressible diffuser flows (Ref. I). The method allows one to obtain 

numerical solutions of the Navier-Stokes equations in finite-difference 

form. A two-equation k-e model is employed for the turbulent flow along 

with a sublayer coordinate transformation so that the flow field for the 

entire diffuser can be computed for both separated and nonseparated flow 

c a s e s ,  

The purpose of the present study is to further verify the numerical 

method developed in Ref. I by applying it to a conical diffuser configu- 

ration with various inlet boundary-layer conditions. The development of 

a two-equation turbulence model suitable for axisymmetric flows, a 

multiple grid Gauss-Seidel iteration procedure for faster convergence, 

and a series of numerical computations are presented along with compari- 

sons with available experimental data. 

2.0 G O V E R N I N G  E Q U A T I O N S  

The basic governing equations for the steady-state incompressible 

turbulent flow can be written as: 
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Continuity Equation: 

X-Momentum Equation: 

.a. 
ax 

0 (r 8 u )  + ~r ( r  Sv)  = 0 O~ 

v 0-7 = O-~ \ O~/ 

Y-Momentum Equation: 

Ov + r o y =  _ O { Or) + 

ao 

The turbulent quantities such as u'v' can be written in terms of 

the mean flow quantities through the eddy viscosity concept as 

" ~  = - 2 v t  ~xOu + ~k2 

where v 
t 

( T E E ) .  

v"-T" = _2v t Jr+ _2 k 
8r 3 

= v +  2 k w "2 - 2 v  t ? 

• (a,,  + a, .)  
ILl V" = --1." t ka r  ~'x 

is the eddy viscosity and k is the turbulent kinetic energy 

(i) 

(2) 

(3) 

(4) 

After substituting the eddy viscosity expressions into the momentum 

equations (Eqs. 2 and 3), one can obtain the vorticity equation through 

cross differentiation. If one also introduces the stream function 

concept into the continuity equation, the governing equations can be 

replaced by the vorticity-stream function formulation as: 

8 
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Vorticlty Equation: 

- - ~ - j ~  

(V t- vl .)  

( r)2~.,, 

where 

l aft [,'-+ l a"' 
r /Jr 

a,,, _ a (,, v,)] a9.} 
+ [ , - 2 - g ; -  7 - ~- 

(v + v t) 

- r ~ 1 

\ ~ /  a~ - = 

f~ = o)_! - olt__L 
ax ar 

( 5 )  

Stream Function Equation: 

~ a; ~ -a7-~ 

where 

= 0 

II ---- ~r 

( 6 )  

A second order pressure equation can also be derived, 

- { a  2 + 

+ ~-a~- \ ~  

as shown below. 

+ --ar 2d2 \(u22 + 2 )  
(7) 

9 
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3.0 A TWO-EQUATION, LOW-REYNOLDS-NUMBER k-e 
TURBULENCE MODEL 

The eddy viscosity, vt, is calculated through the Prandtl-Kolmogorov 

formula, i.e., 

k ~ (8)  = . _ _  v t c 

where the turbulent kinetic energy, k, and its dissipation, E, are 

obtained from the partial differntial euqatlons presented below. 

Turbulent Kinetic Energy Equation (k): 

I 1 I[ ] I  +~k + o ~  _ , o ~ - , l a k  + F o,., c. + ~,~ ok 

+ ", {F/au,' (a~? } 
(v + vt ) 2 + + + + 

( u - v  t) ~ + 2u .k -- 0 

T u r b u l e n t  K i n e t i c  E n e r g y  D i s s i p a t i o n  E q u a t i o n  ( e ) : ~ c  ~ ~ J  
• r . . ~  -t: 

jo++ + ,+++'t._ , ,  .Jr,-  o ,,,,,,,~l-;]_. + ~__-, ~ + L  

+ C I ( v + v t : . ~ )  - - /  ' L~,~/ 

+ e )  ~ +]+ ,o. ~ + ~.,°"~'} 

- C2 ( v + v t / ~ )  k = 0 

The coefficients used in the present analysis are 

= • + Ac/~ c/i C/to 

A 
C ~o 3 (a + A/b) 

~o.= -~ (0 (~) "~  

( 9 )  

(10)  

(11) 

I0 
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where 

c ,  = 1 . : ¢ 6 .  c. 2 = 1 . 9 2  [I - 0 . 3  ¢ , ,p.  ¢-R2)J 

a c = 1.0 

A = N[ ~ - v "--, I1 = k2.'(r~t~ 
v 

a = 1 , 1 0 0 ,  b = 0 .27  

(12) 

The coefficient c o is related to the two-dimensional (2D) planar 

flows while the coefficient Ac is attributed to the axisymmetry of the 

flow. The coefficient Ac can also be written as 

kd x c 

through the use of the continuity equation. Justification for the form 

of Eqs. (ii) and (13) is given in the next section. 

4.0 DEVELOPMENT OF THE EDDY VISCOSITY COEFFICIENT, c#, 
FOR AXISYMMETRIC FLOWS 

The eddy viscosity coefficient, c , developed in Ref. I for 2D 

flows is 

C - A 

g o  3 ( a + A . / b )  ( 1 4 )  

where A, a,.and b are given in Eq. (12). The asymptotic value of c 
~o 

for large A (i.e., away from the wall) is 0.09. When the model given by 
\ 

Eq. (14) is used for conical diffuser flow calculations, it produces a 

faster centerline velocity decay than that indicated by experiment (Ref. 

I). A similar result was observed in the case of a round Jet (axisym- 

metric) with a two-equation k-E model developed by Launder, Rodi, and 

Spalding (Refs. 2 and 3). 

II 
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In order to study the effect of c on the flow-field solution for 
Bo 

a diffuser, c was lowered to a value of (0.56 Cpo) throughout the flow 

field, where c o is given by Eq. (14). The resulting centerline velocity 

is shown in Fig. 1. It can be seen that the calculated results using 

the lower value of cp compare well with the experimental data by Okwoubi 

and Azad (Ref. 4). However, the approach of simply setting c = 0.56 
P 

Cpo is not completely acceptable for diffuser flows because it changes 

not only the flow-field solution but also the inlet condition. 

In the study of axisymmetric jet flows, Launder, et al., (Ref. 2 )  

designed a formula for c so that the round jet flow field can be computed 

reasonably well with a two-equation k-e model. The model, based on the 

jet centerline decay, is 

where 

ct, = 0.09-  O.04f (15) 

dUc du e )2 0.2 
' w I 

The exponent of 0.2 in Eq. (16) is derived from numerical optimization 

for the jet flow computation. The main objections to this model are: 

first, the form of c is somewhat arbitrary, and second, c in Eqs. (15) 

and (16) is a function of x only, i.e., c is constant in the radial 

direction. Thus, a new model of c was derived for conical diffuser 

flows. Note that the new model must also be applicable to axisyu, netric 

jet flows because a jet-like flow can be obtained in a diffuser by 

increasing the diffuser divergence angle. The requirements for the new 

model for cp are: (I) it must be a simple function of the flow-field 

variables, (2) it must be a function of both radial (r) and axial (x) 

coordinates, and (3) it must recover the 2D planar form when the flow is 

locally two dimensional. 

12 
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4.1 A NEW Cp t4ODEL FOR AXISYMMETRIC FLOWS 

The shear stress can be wrltten in terms of the velocity gradient 

in the Prandtl-Kolmogorov model as 

Let 

then 

f, " '  ~,~,- a x ]  

k 2 (a , ,  .,. 0,) 
= ell 7-\~),  ' 

(17) 

c/L c#o - Ac/~ (18) 

( ~ckt) k 2 (@u + av)  Z = c# ° + # 7- ~ ~x "(19) 

where Acp ls the correction term for the axlsymmetrlc flows. 

Since the Cpo model works well for both planar and axlsymmetrlc 

pipe flow, it can be expected that Ac becomes important when ~u/~x is 

nonzero. To retain the two-dimensional applications of the model, one 

can relate Ac to ~u/~x + ~v/~y which vanishes in planar cases. Thus 

for axlsymmetric flow, 

. ( d u  + a v )  = ~ z  . 8 ( 2 0 )  Ac# \ax ~r r 

The above relation can be written in the dimensionless form by 

introducing a local velocity scale and a local length scale: 

~K Actz = -c#1 ~ ~ (21) 
m 

where c 1 is  a constant ,  EK is  a t u rbu len t  scale,  and Au m is  the charac- 

t e r i s t i c  v e l o c i t y .  By equating the length  scale £K to k3/2/E and tak ing 

AUm as u c,  Eq. (21) becomes 

= v k __"kF~-- ( 2 2 )  A c  -c/~I T ~-" u c 

13 
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The coefficient c i could be determined from known distributions of 

Uc, v and, £K using Eq. (21). However, since detailed experimental data 

for the conical diffuser are not available, the constant c will be 

determined from round free-jet data and verified for conical diffuser 

flows. At the centerline of a round jet, v/r is 0.042 Uc/rl/2 (Ref. 5) 

and the length scale, £K' is 1.2 rl/2. Therefore, one can write hc as 

0.04.2 u c 1.2 ri,... 2 ( 0 . 05 )  ( 2 3 )  
".~C/x = - - % 1  r l / 2  -Uc = --c//1 

Rodi's estimate of c 

about 0.04 (Ref. 3). 

at the centerline of a round turbulent jet is 

Therefore, from Eq. (23) 

Ac c - 0 . 0 4  # # o  
. . . . . .  0 . 0 9  - 0 . 0 4  = _ 1 . 0  ( 2 4 )  

cp I 0 . 0 5  0 . 0 5  0 , 0 5  

Thus, the final expression for the eddy viscosity coefficient c becomes 

= c + Ac/~ c/~ /zo 
(2s) 

where 

c - A 
/to 3 (a + A/b) 

Ac =-8 • -~. k. ~-- r ~ u 
c 

4.2 THE c/j DISTRIBUTION FOR A ROUND JET 

The derived c applies to the round Jet flow with the mean radial 

velocity distribution given by Schlichting's and Tollmien's theories. 

The predicted c distribution is compared with Rodi's estimated distri- 

bution that was obtained from experimental data. 

Assuming the length scale variation is small across a round Jet, 

i.e., £ K ~ 1.2 rl/2 and that c o is 0.09, c becomes a function of 

(v/r) only. From Eq. (25), 

2:1 , 
c 

(vlu) 
= 0 . 0 9  - 1 . 2  c 

(r/r1/2) 

(26) 

14 



A E  D C - T R - 7 7 - 7 8  

The expression v/u can be obtained from either Schlichting's 
c 

(Ref. 6) or Tollmien's theory (Ref. 7). From Schlichting's theory, 

~' = .I. x 

] z/3 
z / -  3. 

+ I t / 2 )  2 
(' z 

where 

r / = ~  t"7-- 
1 

• -~ and  u c 
|~, 

.~ K , ~ l t h  .~t  = 0 .0161  
8;'7 l: x 

t \~k  

( 2 7 )  

Thus, 
| .~ ~-~ 

- 0 . 0 3 2 2  ~ - -  2 

,,o 
(28) 

Also, from Ref. (6), 

X 

rl.,. 2 = 5 .27 .__vt - (5 .27  * 0 . 0 1 6 1 )  x 
q K  

and 

r _ 1 . r_ = 4,,~/'~ - -  

r l / 2  ( 5 . 2 7  * 0 . 0 1 6 1 )  x 5.27 . ~-~-- 7/ ( 2 9 )  

Substituting Eqs. (28) and (29) into Eq. (26), the final expression for 

c becomes 
P 

I - ] ) 
c = 0.09 0.0424 ~ T/2 

- (30) 
+ ] r l 2 )  2 (1 

The c distribution of Eq. (30) is shown in Fig. 2. 
P 

n, i.e., at the outer edge of the jet, 

For large values of 

cg = 0.09 + 0.1696 
72 ( 3 1 )  

Therefore, the asympototic value at n ÷ ~ is 0.09. This is consistent 

"with the flow behavior, because as one moves away from the centerline 

the factor (I/r) diminishes and the flow behaves more or less like a 

two-dimensional planar flow. The c distribution obtained with Toll- 
P 

mien's velocity distribution is also shown in Fig. 2. Rodi's estimate 

15 
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of cp for a round jet, based on Wygnanski, et al., measurements, is also 

included for comparison. Although the trend and level of c near the 
p 

centerline region is roughly the same, the behavior of Rodi's c is quite 
P 

different from the present theory. 

5,0 BOUNDARY CONDITIONS AND COORDINATE TRANSFORMATION 

5.1 BOUNDARY CONDITIONS 

Boundary conditions for the diffuser flow can be divided into four 

regions, namely, the inlet condition, the exit condition, the symmetry 

condition, and the wall condition. 

5.1.1 Inlet Boundary Condition 

Two types of inlet conditions are used in the present analysis, 

the fully developed pipe flow inlet condition and a boundary-layer inlet 

condition with a potential core region. 

For the fully developed pipe flow condition, the profile is ob- 

tained by solving the three stations in the inlet section of the dif- 

fuser until convergence is reached. The convergent pipe flow solution 

is then held fixed as the inlet condition for the subsequent diffuser 

flo~fleld computations. With this condition, the only parameter needed 

to prescribe the profile is the inlet Reynolds number; all other initial 

condition parameters, i.e., velocity profiles, TKE profile, etc., are 

computed and are self-conslstent. For a nonfully developed profile, 

i.e., a boundary layer with a potential core region, prescription of the 

inlet condition is more involved. Every flow parameter (~, u, v, T, 

k, c, and ut) must be given consistently, not only in the core region 

but also throughout the sublayer. In the present analysis, the boundary- 

layer thickness (ye) is first given and the total shear stress distribu- 

tion is calculated from 

rt°t  - T + cos  • , O ~ y S y  e (Boundary Laver)  

rto t = 0 ' Y>Ye (Core Region) 

(32) 
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The mixing length distribution is obtained as 

Rm = 0.09 tanh \0 .09  (0.41 , '~ )  • y,., ( 3 3 )  

f o r  b o t h  t h e  b o u n d a r y  l a y e r  a n d  c o r e  r e g i o n s .  E q u a t i o n s  ( 3 2 )  a n d  ( 3 3 )  

are then used to compute the vorticity distribution through the modified 

Van Driest formula 

~"~'4- .= - - a l l  + = 

' t o t  ,(%) 
] +~1 +E2~m- I]("°t)12 

- - - ~ w  -.a 

( 3 4 )  

where 

~m'- : ~ml:. ~" ' D = { I  - e  

v + = : - -  = 26 • lJ 

r 
w = %.=2 • U - -  = I1 

P v* 

The velocity and the stream function are then obtained from Eq. 

(34) through a numerical integration scheme. The free-stream values of 

the turbulent kinetic energy and the eddy viscosity are computed from 

= 3 ( k t . U l . c )  2 ke 

vt ,e = k2 • ul, c • ( ~ )  ( 3 5 )  

where kl and k2 are free-stream proportionality constants. Typical 

values for the present analysis are 

kl  = 0 .0 l  and k2 = 0.002 (36) 

Finally, k and E are computed for the boundary-layer region from 

t: t = b,,2 . a....~u ay 

k - -  (37) 

k 2 
= c • 

~t V t 
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5.1.2 Exit Boundary Condition 

With a diffuser incorporating a constant area section at the exit 

(tail pipe), the tall pipe exit boundary condition can be specified by 

the parallel flow condition, i.e., 3/~x = 0. 

5.1.3 Symmetry Condition 

The symmetry condition is imposed to reduce the computational 

domain. Along the line of symmetry (r = 0), the following conditions 

are satisfied : 

-- 0, 

O u = f ~ = O ,  
~ r  

a.._.~k = a__~ = 0 
ar ar 

V = 0 

(38) 

5.1.4 Wall Boundary Condition 

Since both the core region and the sublayer region are solved 

numerically with the present formulation, the wall boundary condition is 

applied at y = 0 as 

= c o n s t a n t ,  

~ a y  ' 
( 3 9 )  

v t = k = ~ = O ,  

U = V = 0 

5.2 COORDINATE TRANSFORMATION WITH A V A R I A B L E  
SUBLAYER STRETCHING 

In the present analysis, the governing equations along with the 

boundary conditions are solved in a transformed rectangular domain. 

This is achieved by transforming the diffuser geometry into a rectangu- 

lar domain followed by a sublayer stretching so that adequate resolution 

can be obtained in the wall layer region, see Fig. 3. The sublayer 
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stretching is designed to adjust automatically for the sublayer velocity 

gradient. In addition, the relative number of grid points in the sub- 

layer and the core region can also be varied to compensate for the inlet 

boundary-layer thickness. 

The complete coordinate transformation functions in the core and 

the sublayer regions are listed below along with the transformation 

factors. 

Core Region Transformation Functions 

'n Icosh ~i'ma.-r)+ g.({n:a,-r ')2- 1]]+ ~}  

+1 (~): 

• O~F<F ° 

-' <:;  r,+ ,-<r,,. - r -  , > ]  t<+ ,.o, ~;,~.x- ~ > - ,  ~ : . . -  ; - '>~ -  'o] t 

(a2F'~ = +/aF}  ~ 
t 

S(,). t2g. IC + tanh [(r,nax-r)-l-g(~ma--r--i) 2. ].0]] 

+ D + 2g{rma ,-*:-  1)] 2 o] t sech ( / :ma,  - ~) + g (Fro°= - ~ -  l )2  - l .  

¢ ~ , : - s < , >  , ,~:;~ ( ~ ; ) [ ~  , 
a , 2 2  ~ ~ , a - D T . - l -  • ( x )  s ( x )  

( s  (x)  r 
~,--f-(~) • 

( ~ ) :  - (~7) s<,> s',,> 

(40)  
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Sublayer Region Transformation Function: 

_ a  r = S (x )  { ]  ~ t a n , B ( ; = ,  - 

Or _ _ 1  
a ~  = . • s ( ~  co.,~ [ ,B  (~ ,_  ~)] 

: <F<~ ,.'1} . ,,, 
- -  - -  t ' lrl, g lX  

Or - _(Or b S ' ( x )  • r 
T.  - k ~ /  s ( , )  

a2; 2# 
ar'-~ = (J ",~'(x--) " ( d ~ )  " COS [~ ( ; m a x - r ) ]  sJn[ ,B ( ' r m a x - ~ ) ]  

a 2 r _  
ax 2 s (~) .x (41) 

a r  . S " ( x )  r _ {S  (x )~  . 

a,a--T = " co.. ( m , )  " "  c,o 

_s'(x) (a;) 
s (x---~ " 

where a, 8, c ,  g and F are coefficients of transformation (Ref. i) . 

These coefficients are determined through a matching procedure at location 

r ° (which is set equal to unity in the present analysis). By selecting 

the proper value of rma x (which must be greater than ro) , one can adjust 

the relative number of grid points in the sublayer and the core region. 

For example, with ro I and rma x 2, there will be 50 percent of the 

grid points in both the sublayer (ro ! ~ ! rmax ) and the core (0 ! ~ ! 

r o) regions. 

6.0 N U M E R I C A L  P.'IETHODS 

6.1 A GENERAL FINITE DIFFERENCE FORMULATION WITH DECAY 
FUNCTIONS 

The governing equations in the transformed plane (x, r) 

written in a standard form as 

al ~ + a2 af 2)- bl ~x b 2 ~ + d = 0 

can be 

( 4 2 )  
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where ~ represents the flow variables ~, T, k, and e. The coefficients 

al, a2, bl, b2, and d are given in Appendix A. The general finite dif- 

ference formulation of Eq. (42) is 

l ) t (a])~,. 'Oi+,.j -- 2 +i.j ++/+Ji__].j __ (I) I + 4 2  \.1"~" {"i (~i-] J-- ~ ) ' - - l ' J '  "'2"~+ (43) 

()) - _ ) + , _ , _ + , , + _ 1 1  ..,. a 2 , ~ i . j +  I 2 ~ i .  l ~ i , i - - I  _ (1 )2 .C ,  j , ~ + d i , j  

• ~ (SF \%  
= 0 

where the decay functions G. and G. are evaluated locally as 
i 2 

C = l . O -  0 . 0 6 2 5  (R) 2 , IRI_<2 

_ 2 _ i ,Inl>m 
I1~1 R 2 

w h e r e  G = C i . * * h e n  R = bl  

anti  G = G: , w h e n  R = - -  b2 • +F 
a 2 

( 4 4 )  

The use of the decay function assures the numerical stability as well as 

the accuracy throughout the flow field for a wide range of Reynolds 

numbers (Refs. 8 and 9). 

6.2 GENERAL PROCEDURE WITH A STANDARD GAUSS-SEIDEL 
POINT ITERATION METHOD 

The finite difference equation [Eq. (43)] can be solved in several 

ways. For simplicity, a standard Gauss-Seidel iteration method is used 

to obtain the solution. The method updates the field values with the 

most recent available neighboring point data in the following way: 

n +  1 

~ i , j  = 

n n + l  n 
c ~ .  ~ . , , +  + c~ . ~,'_+~.j + c~ . ~ , ~ + ~  + c ,  . .~ ,+_~  + d~.j ( 4 5 )  

CU 
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where the superscript n denotes the values at nth iteration, (n+1) 

denotes the updated value. The coefficients, C I, C2,..., C 4 and CU are 

_- ( a l ~  ] bl"~X 
CI ~ ~'~-~ /C--~i -- 2~1; / 

C 3 = ~ j  "2a 2 (46) 

= + -2-~2 / 

CU -- C 1 + C 2 + C 3 + C 4 

The general flow chart which describes the sequence of the solution pro- 

cedure is presented in Fig. 4. 

7.0 FACTORS AFFECTING THE RATE OF CONVERGENCE 
OF THE POINT ITERATION ,"4ETHOD 

The advantage of using the Gauss-Seidel point iteration method to 

solve coupled algebraic equations is well known. The method can be easily 

programmed and does not require excessive computer storage. However, 

there are two important factors which affect the rate of convergence, 

namely, (I) the total number of grid points and (2) the initial flow- 

field guess. As the total number of grid points is increased to obtain 

better resolution, the rate of convergence decreases. This is because 

the information at the boundary points must travel a longer distance to 

reach the whole flow field in the elliptic type of flow calculations. 

Since the point iteration method can update only one point value at a 

time, the larger the number of grid points the slower the convergence 

rate. On the other hand, the rate of convergence can be greatly im- 

proved with a good initial flow-field guess. 
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7.1 INITIAL GUESS FOR DIFFUSER FLOWS 

It is well known that a turbulent boundary-layer profile can be 

represented by the superposition of a logarithmic profile and a wake 

profile (e.g., Ref. 10). The representation is commonly known as Coles' 

law of the wake. Coles' concept is generalized in the present approach, 

with the logarithmic part of the profile replaced by a function related 

to the fully developed pipe (or channel) flow profile at the diffuser 

inlet and with the wake portion represented by a cosine function. 

The initial velocity field is obtained as a linear combination of 

the inlet profile and the wake profile, Fig. 5, i.e., 

U = U a + U b (47) 

where u a is related to the inlet velocity profile, Ul, as 

u (48) 

and the wake component of the profile, u b is defined as 

) 
Ub = Ub.c 2 (49) 

The centerline values u 
a,c 

(48) and (49). From Eq. (47), 

and Ub, c are the only unknowns in Eqs. 

= U -- U Ua,c C b,C (50) 
u 

With Eq. (50), Eq. (48) becomes 

u - gbr  c U ---- C 
a U] , c  • u ]  

Therefore, the final expression for the velocity profile can be 

written as 

. = (°o-°b~ °, + ,÷ oos (~o') 
Ul,c  " Ub,c  2 

(51) 

(52) 

f 
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The unknown u b In Eq. (52) can be determined from the conservation of ,C 

mass. By integrating Eq. (52) across the diffuser, one obtains 

1 SO(x) 

The rlght-hand slde can be evaluated as 

s/c,) /o(,) (,¢_ub.:) 
u • r d r  = "l,c 

o 

u- rdr (53) 

/o,., [, )] 
+ cos (_SO . r r d r  

• u I r d r  ~" Ub,c 2 
o 

S O ( x )  

= cUl r d r  + u , c  
,e  2 

Therefore, 

u t ("~ - u b , ~ )  /o(x) 
rdr 

Ul,c oJ uI 
(54) 

In terms of the stream function, P = (furdr), Eq. (54) becomes 

{vl 

\ " l , c  } 2 

where 
1 

A~ = I u I r d r  

Jo 

(55) 

Solving for Ub,c, one obtains 

ub, C so 2_ SO 2 . A~_A_I 
4 Ul,  c 

(56) 

When the wake component vanishes, i.e., Ub, c = 0, Eq. (56) becomes 

1 (S0)2 "c m ~ ~ 0 

u ] , c  
( 5 7 )  

24 



AE DC-TR -77-78 

o r  

U u = "'l.c 
(so)2 ( 5 8 )  

In general, the wake component (Ub,c) is nonzero and the centerllne 

velocity (u c) is greater than that given by Eq. (58). In order to 

increase u c value from Eq. (58), an effective area concept is introduced 

as 

12 

Uc = "1 c 
(SOeff)2 (59) 

The simplest form of SOef f is 

SO(x),.ff = [SO(x) - l] " X + 1.0 (60 )  

where SO(X)ef f is shown in Fig. 6 

The unknown constant A (0 ! A ! 1.0) depends upon the diffuser 

divergence angle. In gener@l, the value of ~ decreases from unity as 

the divergence angle increases. No formula has been derived to deter- 

mine the exact value of A. Therefore, its specification requires some 

experience about the diffuser flow solution. For an inexperienced user, 

in general, A ffi 0.5 is a good initial guess. 

The complete initial flow-field distribution of the velocity, the 

vortlcity, and the stream function (u, ~, ?) can be derived from Eqs. 

(56) and (47) as 

"(#o)  = .,,,, °-u,,o °''° + . 

uI ,  c 2 

(63 )  
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(.'~"0) (r) V t = Yr. ] 

for any axial location, x. 

[ ( )] = b, c) + 0 . 1  * ub'= : (64) Ul,c ~ # "  s in  ~ • r 

7.2 M U L T I P L E  GRID GAUSS-SEIDEL I T E R A T I O N  M E T H O D  

The Gauss-Seidel iteration method is a point iteration method which 

updates one point at a time with the most recently available values at 

the neighboring points. It can be easily seen that the rate at which 

the information from a boundary is propagated to the rest of the flow 

field depends upon the total number of the grid points in the flow 

field. ~en the flow-field pattern is fairly complicated and it is 

necessary to use a large number of grid points to improve the accuracy of 

the final solution, the rate of convergence becomes slow with the point 

Gauss-Seidel iteration method. A simple and efficient multiple grid 

method has been developed to speed the rate of convergence. 

A series of grid systems can be constructed for a rectangular 

domain, Fig. 7, with grid spacing ratio equal to (I/2) N. 

The general multiple grid Gauss-Seldel iteration scheme can be 

written as 

Do 10_._00 J = J L , J R , L  

Do 100 1 : I L , I R , L  

n+l n n+l n 

~i , j  = (C1 'Oi-rL,j + C2 ~ i - L , j  + C3 ~ i , j + L  

+ O " ) ~ ( C  I + C 2 + C a + C 4) 

n+l 

C4 ~i,j-- L 
(65) 

100 Continue 
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With L equal to unity, one recovers the conventional single grid system 

Gauss-Seidel method. For a dual system, L is set equal to two for the 

first N iterations to obtain a solution for the coarse grid system. 

Before continuing to a finer grid system (with L = I), it is necessary 

to obtain the midpoint value with a linear interpolation scheme. The 

flow chart for the process is shown in Fig. 8. Since the coarse grid 

system has only one-fourth of the total grid points of the finer system, 

the rate of convergence is a factor of four faster. Another advantage 

is that the fast convergent solution obtained in the coarse grid system 

is used to obtain the initial guess for the finer grid system through an 

interpolation routine. In the present solution procedure, a dual grid 

system, i.e., from a 17 by 31 coarse system to a 33 by 61 fine grid 

system is adequate. The operation is done automatically in the computer 

program. 

8.0 RESULTS AND DISCUSSION 

The numerical formulation and the turbulence model presented in 

the previous sections are applied to the computation of several conical 

diffuser flows. 

Although much experimental data on the performance of subsonic 

diffusers are available, few of these data are suitable for verification 

of the numerical analysis. The major emphasis in most experimental 

investigations has been placed on overall performance, i.e., pressure 

recovery, and only rarely were the mean velocity profiles at the inlet 

section and in the divergent section measured. Even more rare are 

experiments in which the turbulence properties in the flow field were 

measured. Recently, however, experimental data on both the mean velocity 

and turbulence properties in an 8-deg conical diffuser were obtained by 

Okwuobi and Azad (Ref. 4); the inlet flow was a fully developed pipe 

flow. These data provide a good test case for comparison with the 

numerical analysis because the fully developed entry conditions are well 
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established and can be predicted with confidence. In addition to the 

correlations of the Okwuobi and Azad experiment, comparison of the 

numerical results with other experiments (in which the inlet conditions 

are less well-defined) are described in this section. 

8.1 NUMERICAL SOLUTIONS OF 8-DEG CONICAL DIFFUSER WITH A 
FULLY DEVELOPED INLET PROFILE 

The geometry of the 8-deg conical diffuser is shown in Fig. 9. 

The area ratio is 4:1. The computed velocity field at several axial 

stations is also shown in Fig. 9. It can be seen that the velocity 

profile changes from that of a fully developed inlet pipe flow into a 

wake profile in the diverging section. The law of the wall region also 

diminishes and the wake portion of the profile becomes dominant at the 

exit section of the diffuser. The comparison between the computed and 

the measured velocity profiles at two stations is shown in Fig. 10. The 

agreement between the experiment and theory is excellent. In order to 

check the sensitivity of the computed flow field to the present turbu- 

lence model, a small perturbation on the c formula from 
P 

to 

= - c .  c# C#o A 

c = c - ].4 Ac (66) 
# /Io # 

was used. The modification has no effect on the fully developed inlet 

velocity profile because the flow is parallel so that the radial veloc- 

ity component, v, vanishes. The velocity profile at the downstream 

station (x/D I = 5.95) is only slightly changed'by the c perturbation as 

shown in Fig. 10. 

The velocity profile near the wall is shown in Fig. 11. The line- 

arity of the velocity profile in the sublayer region is clearly evident 

and the agreement with the experimental data is excellent. 
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The decay of the centerline velocity is shown in Fig. 12 for two c 

models. The c c model gives a faster velocity decay as expected 
~o 

On the other hand, results obtained from the new c expression agree 

very well with the experimental data. 

The total shear stress distribution is given in Fig. 13. The com- 

puted results agree well with the measured total shear stress at x/D I = 

1.19 in the diverging section. At the downstream station (x/D I = 

5.95), although the shape of the total shear stress profile is qualita- 

tively correct, the maximum predicted value is about 15 percent higher 

than the measured value. The measured turbulent kinetic energy dis- 

tribution, Fig. 14, is also lower than the prediction at the downstream 

station, especially near the wall. In this region, the turbulent fluctua- 

tion velocities are of the same order of magnitude as the local velocity 

(u). In this situation, the hot-wire probe measurement is questionable. 

Usually, the x-probe yields a lower measurement of the turbulent intensity 

because of the higher instantaneous flow angularity and negative velocity, 

hence an underestimated shear stress and TKE. The agreement between 

calculated and measured TKE near the diffuser inlet is quite good. The 

calculated turbulent kinetic energy distribution near the wall, shown in 

Fig. 15, is lower at the downstream station than at the inlet. This is 

caused by the lower TKE production associated with the downstream veloc- 

ity profile. The ratio between the shear stress u'v' and the TKE is 

shown in Fig. 16. At the inlet, the ratio quickly rises to a maximum 

value of 0.3 and drops gradually to zero at the centerline. Experimental 

data for fully developed pipe flow by Laufer (Ref. 11) are also included 

in Fig. 16 for comparison. At the downstream station, the profile is 

skewed toward the centerline and the maximum value of the ratio also 

increases slightly. 

In Fig. 17, the distribution of the eddy viscosity coefficient, 

cp, is shown for several axial stations. At the inlet, the c 

distribution is identical to that of the previous model since the Ac 
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term is zero. The c distribution drops immediately in the diverging 

section. The level of c then increases slowly with increasing distance 

in the diverging section. It is important to note that the average 

value of c in the diverging section is always lower than the inlet c 

level. 

The wall pressure coefficient, Cp, is presented in Fig. 18. The 

computed pressure coefficients agree well with measured values except 

that they are somewhat overpredicted in the downstream stations. Part 

of this difference could be attributed to the effect of the computa- 

tional grid size. Another factor is that the numerical computation is 

carried out for a diffuser with a tail pipe while the experimental 

configuration did not have a tail pipe. It has been shown, Refs. 12 

and 13, that the tall pipe increases the pressure recovery somewhat. 

Therefore, the higher predicted pressure recovery is consistent with 

experimental evidence. 

8 .2  NUMERICAL SOLUTION OF 8-DEG CONICAL DIFFUSER WITH A 
BOUNDARY-LAYER INLET PROFILE 

Computations of an 8-deg conical diffuser flow field were made with 

two inlet boundary-layer thicknesses. The velocity distribution for the 

thin boundary-layer case, 61 = 0.05 DI, is shown in Fig. 19. The dif- 

ference between the velocity profile with a boundary layer and the 

fully developed one is the existence of a potential core. It can be 

seen from Fig. 19 that the potential core remains throughout the dif- 

fuser section• The wall pressure coefficient, Cp, is shown in Fig. 20. 

Comparison with the experimental pressure recovery is good. 

The velocity distributions for the thicker boundary-layer case, 

(61 = 0.2 D I) are shown in Fig. 21. The potential core region is 

smaller than in the thin boundary-layer case, otherwise, the development 

of boundary-layer profiles is about the same. The total shear stress 
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distribution is shown in Fig. 22. Upstream of the inlet, the total 

shear stress is highest and constant near the wall, i.e., Ttot Tw 

In the diffuser section, the maximum total shear stress location moves 

away from the wall and the maximum value increases• The shear stress 

along the wall decreases in the diverging section. The turbulent 

kinetic energy distribution is shown in Fig. 23. The free-stream 

turbulence level was set equal to one percent which remains approxi- 

mately constant in the potential core region• Just as was observed for 

the shear stress, the location of the maximum TKE moves away from the 

wall in the diverging section. The eddy viscosity distribution, nor- 

malized by the local centerline velocity and the local boundary-layer 

thickness, is shown in Fig. 24. Notice that, as x increases, the maximum 

eddy viscosity increases greatly from the boundary-layer value of order 

0.001 near the entrance to almost the turbulent mixing layer value of 

order 0.01 at the downstream station. The length scale derived from 

the turbulent kinetic energy dissipation is shown in Fig. 25. The 

maximum normalized length scale in the boundary layer increases from 

0.65 to about 1.4 between the inlet station and the downstream station. 

Finally, the wall pressure coefficient, Cp, is presented in Fig. 26. The 

exit value of 0.77 is sllghtly lower than the previous case with a 

thinner inlet boundary layer (Cp = 0.8). This is consistent with 

experimental evidence that Cp decreases with increasing inlet boundary- 

layer thickness and that C increases again when the inlet condition is 
P 

fully-developed (Refs. 13 and 14). The effect of the inlet boundary- 

layer thickness on the pressure recovery coefficient for an 8-deg 

conical diffuser is shown in Fig. 27. Although the trend is well pre- 

dicted, the predicted C level is higher than the data of Ref. 13. 
P 

8.3 NUMERICAL SOLUTION OF 16-DEG CONICAL DIFFUSER WITH A 
BOUNDARY-LAYER INLET PROFILE 

The computed velocity distribution for a 16-deg conical diffuser 

with a thin inlet boundary layer (~I = 0.05 D I) is shown in Fig. 28. 
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The velocity at the exit station (x/D I ffi 3.58) is negative near the wall 

indicating that the flow is separated. This is in agreement with the 

experimental evidence observed by McDonald and Fox, Ref. 15, and Senoo 

and Nishi, Ref. (12), who found the 16-deg conical diffuser with an area 

ratio of four lies within the separated flow regime of the diffuser 

performance map. The pressure coefficient C is shown in Fig. 29. 
P 

The agreement with the experimental data (Ref. 12) is qualitatively 

good. The experimentally observed separation point detected by tufts 

lies somewhat ahead of the predicted point of separation. This could be 

caused by the coarse grid size (Ax) used in the computation. However, 

the use of tufts only provides a crude estimate of the point of separation. 

Thus, the agreement is probably as good as one could expect. 

8A NUMERICAL SOLUTION OF 13-DEG CONICAL DIFFUSER WITH A 
BOUNDARY-LAYER INLET CONDITION 

The measured and calculated velocity distribution for a 13-deg 

conical diffuser is shown in Fig. 30. The agreement with the data, 

Ref. 16, is qualitatlvely good at x/D I = 3.2. The experimental data, 

obtained with an x-probe hot wire, shows a larger tall region near the 

edge of the boundary layer. Near the wall, the hot-wlre measurement is 

slightly higher than the calculated velocity values because of high 

local relative turbulent intensity. At a far downstream station, x/D I 

= 5.9, the flow separation is clearly indicated in the calculated velocity 

profile. Under the separated flow condition, the conventional hot- 

wire probe is not capable of distinguishing the positive and negative 

velocities. As a result, the hot-wire measurement is always positive in 

the separated flow region. The pressure coefficient C is shown in Fig. 
P 

31. The agreement between the data and the computed value is good. The 

predicted value of C is slightly higher than the data at the exit. The 
P 

point of separation is also included in Fig. 31. The present predicted 

point of separation lles among the separation points predicted with 

various assumptions in the boundary-layer theory (Ref. 16). No experi- 
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mental evidence of the point of separation was obtained. Furthermore, 

no comparisons were made between the computed turbulence flow field and 

the data because of the apparent misalignment problem of the hot-wire x- 

probe used in the experiment as discussed in Boldman's report (Ref. 16). 

9.0 CONCLUDING REMARKS 

The important results of this analytical and numerical study of 

turbulent flows in conical subsonic diffusers are: 

I. A c formula for axisymmetrical flows has been developed for 

the low Reynolds number, two-equatlon k-c turbulence model 

which unifies the computation of 2D planar and axisymmetrl- 

cal flows. 

. An initial guess procedure and a multiple grid Gauss-Seidel 

iteration method have been developed to increase the rate of 

convergence. 

. Numerical computations of several separated and nonseparated 

conical diffuser flow fields, with nonuniform inlet condition 

varying from a fully developed pipe flow profile to a thin 

boundary-layer profile, are in good agreement with available 

experimental data. 
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APPENDIX A 
GOVERNING EQUATIONS IN TRANSFORMED COORDINATES 

The standard form of the derived equations, Ref. I, is 

a 1 ~ + a 2 -- b I ~ + I) 2 + d = 0 a~ 2 ) a~ 

where ~ represents the flow variables, i.e., ~, ~, k, and e. 

responding coefficients, al, a2, 

of variable, fl, ~, k, and e. 

(A-l) 

The c o r -  

b 1, b2 ,  and d a r e  g i v e n  b e l o w  f o r  e a c h  

a - E q u a t i o n  

a l  = [ 

a2 ____ [ ( ~ . ) 2 +  ( ~ . ) 2 ]  

- , a ' ,  " " , 1 }  

I [  ~ o., 
_ , _~ (~1 ~ - -  ~ ~ ~,,](~1 b2 (v -~ v t) + 

r", a " , l l f a ~ -  (,., + [ , , - , .  ,~ ,  + (~.)  , , . , ~ ,~ , ,  

a ~, a-----F -~ T ~ ~ - 2 j 

+ l I a2vt {//--fJt'--"-~ , ~ [~-- (~'r~) + --~.~v "I" (~xx) ~.]6~v 

~-, { [ (~ , )~_  i~,~ ~ ~ ~, 

+"" Lkox'} + k~)]  

(v + v t) 

+ ~ v  ( , , )  , v ]  a~" ~ ~ 

+~ ( ~ ) ( ~ ) [ ~  ( ~ ) -  ( ~ ) - ( ~ )  ~,~l} 

a~,, ~(a~, a'-,~ra,, a, a.. + _ _  _ _ +  (~.) 

O~2Vt { 

• ~ ( ~ , ) ~ ] ]  

(A-2) 
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W-Equat ion  

k-Equation 

a I = ] 

a ]  = I 

a2--" [(~)2- (~)~] 
b I = 0 

~ :  -~_, _ ~ , +  ~ ( ~ )  
O~ 2 O~ 2 

a2~ a~ 
~ - ~ . ~  ( ~ ) *  ~ 

a s  Lk ~'x / + \~-r / ] 

kj u La~ + ( ~ )  a ,J  ( .+ . t )  

= I j [ , ,  a~ a,.,, 

art art F( 82[ ( a2F 
~-[u - ( ~ ,  (~) ~ ) ] ( ~ ) -  ~ + ~,,,,~) ~- ,o,,)] 

1 ) ] 
--aX ~ J  (t,," -i- v t) (v -i- v t )  ~, 1" t 4" 7 2l's k 

a I -- 1 

--[( +(~' ~,)] 
- ] v t 

- + 1 l v t _  _ v t ....'~e)l (aa.~.~) 

v t ~- [u-  (~ (~)+ (~ )~  (~))](,, ~) 

- (,,,.,,....,~) r,'a~, ( a2~~l 1 Lka,2) + \ ~~/2 ) j  

~ - E q u a t i o n  

b 2 

(A-3) 

(A-4) 

(A-5) 
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(aT) a=~ - + C d = 2 ~ a~a~  

+ [ ~ ( ~ ) ] '  + ~ (~) ' ]  + r~,, ~, a, 1 , , ,  (~ )+  a,_+ 

_C.2 ~2 I 
k ( v + v t .  %) 

In the vorticity-stream function formulation, the pressure field is 

decoupled from the momentum equations. Therefore, the pressure field 

can be calculated separately from the pressure equation. 

formed plane, the pressure equation can be written as 

a2p a~p . F ( a ~  2 . (a~21 

ap ~ ,  ( + ~ ( ~ ) ] : ~  -s 
L ~, 

where 

In the trans- 

a~ ~,m,) ka-7) T (~, (A-7) 

( ~ )  ~,+ o,, (o, 1 oo - u  ~ . - a u  ¥ v ~ - f +  v ~ 

The corresponding coefficients for the pressure equation in the standard 

form are: 

a I = 1 

b 1 = 0 

-rr~",', + r , ' ,~  + ~ ,, ,)]( b 2 = ', a - T J  T 

d -- ,. ( ~ ) ~ -  a ,  + ~ - a~a~ ~ 

+ a i  + ,, ( . ,  .,)[(o~,~+ 

(A-8) 

( , . ~ + . ~ ) . [ ( ~ ) ' + ( a , ' , ' ~  ,~ , ,  ] 

~ )  aa 
~7- 

~ (~)- ~. ~÷, -u-~ 
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N O M E N C L A T U  R E  

A Parameter 

a Constant 

a 1 , a 2 
Coefficients 

b Constant 

bl ,b 2 Coefficients 

C Transformation coefficient 

Cl,C 2 

C 
P 

Coefficients 

Pressure Coefficient, 
Ap 

-2 
0.5 pu I 

cp,Cpo,C~1 Eddy viscosity coefficients 

Ac Eddy viscosity coefficient correction for axisymmetric 

flow 

D Local diffuser diameter 

d Source term 

F Transformation parameter 

Rodi's c correction for axlsymmetric Jet 

G i , Gj Decay Functions 
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Transformation parameter 

K Constant in Schlichtlng's round jet theory 

k Turbulent kinetic energy 

kl, k2 Proportionality constants for k and vt in potential core 

Length scale 

n Iteration number 

Pressure 

R 

Re 

Parameter 

DI~ I 
Reynolds number, -- 

RI,R j 

r, r. 

Grid Reynolds number 

Radial coordinate in physical and transformed plane, 

respectively 

r 
max" Diffuser wall coordinate in transformed plane 

S(x), SO(x) Diffuser wall coordinate in physlcal plane 

u Average velocity 

UjV Velocity components 

Au Velocity excess in Rodi's c model 
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u T I 
~vVjw Turbulent velocity components 

u b 

V* 

Wake component of the velocity profile 

E ~w/6, Friction Velocity 

Axial coordinate 

Lateral distance measured from wall 

YG The width of a round jet in Rodi's c 

Transformation parameters 

model 

Index, zero for planar configuration, i for axlsyrmnetric 

configurations, or incremental or boundary-layer thickness 

Turbulent kinetic energy dissipation 

2e Total diffuser divergence angle 

Molecular viscosity 

t 

E 

Eddy viscosity 

Constant 

Shear stress 

Dependent variable 

Stream function 
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Vorticlty 

Similarity parameter for round Jet 

Density 

Constant 

SUBSCRIPTS 

Centerllne 

e Edge of the boundary layer 

I Inlet section 

m a x  Maximum 

O Sublayer, core region solution matching location 

T, tot Total 

W Wall 

SUPERSCRIPTS 

+ Dimensionless quantity with the sublayer scale 
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